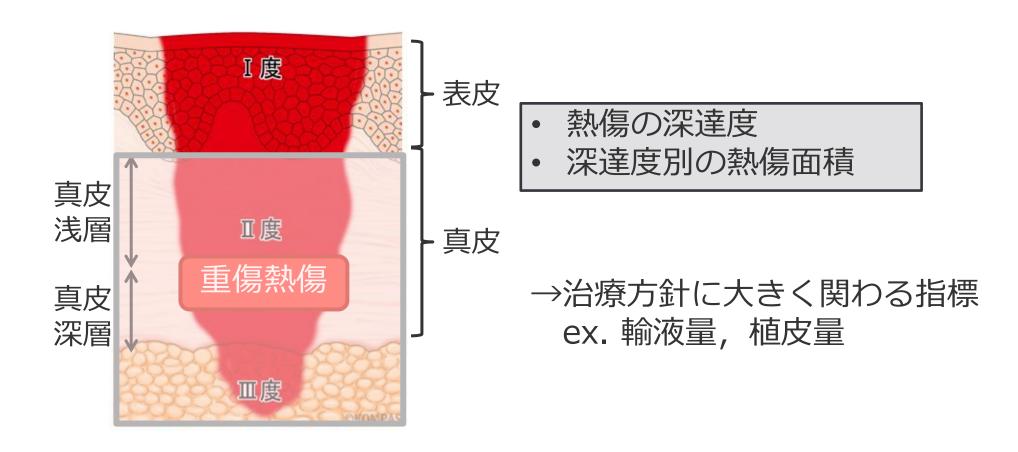
画像処理を用いた熱傷部位の面積計測とその評価

谷口麟太郎1,加藤聡一郎2,山口芳裕2,田中敏幸1


¹慶應義塾大学 理工学部 ²杏林大学医学部 救急医学

- 1. 研究背景・目的
- 2. 提案手法
- 3. 結果
- 4. 結論・今後の展望

- 1. 研究背景・目的
- 2. 提案手法
- 3. 結果
- 4. 結論・今後の展望

1. 研究背景・目的

◆ 熱傷の基礎知識

1. 研究背景・目的

◆ 熱傷医療について

①重症度診断,初期診療


②搬送

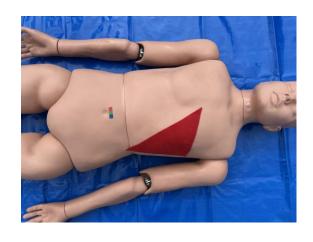
③専門治療

1. 研究背景・目的

◆ 重症熱傷診療の現状

熱傷面積,深達度の評価は目測で行われている

熱傷面積の評価や深達度の誤診断といった問題が見られる


1. 研究背景と目的

◆先行研究

- 深達度別の熱傷領域抽出
 - 先行研究の段階で精度が高く、処理速度も速い
- 熱傷面積の評価
 - 3D人体モデルを作成し、点群処理による面積計算
 - ガーゼを用いた植皮面積の簡易計測法
 - いずれも機械または時間を必要とするため,迅速 な判断が必要とされる現場では不向き

- 1. 研究背景·目的
- 2. 提案手法
- 3. 結果
- 4. 結論・今後の展望

◆ 入力画像:計92枚

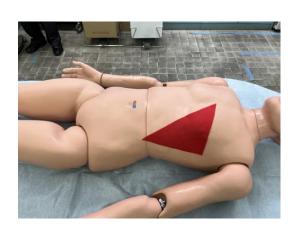
使用したカメラ

- iPhone
- Android SC02K
- Canon IXY
- Canon Kiss X7

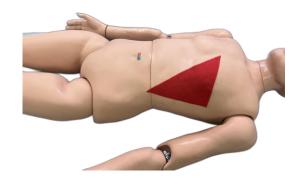
- iPad
- Teladoc HEALTH
- · Web Camera
- GoPro

◆面積の測定手法

使用する画像の背景除去

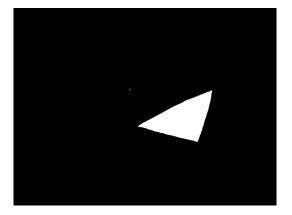

熱傷部位とそれ以外で二値画像を作成

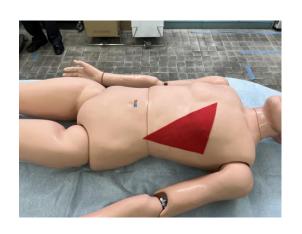
胴体部分の切り抜き


胴体部分とそれ以外で二値画像を作成

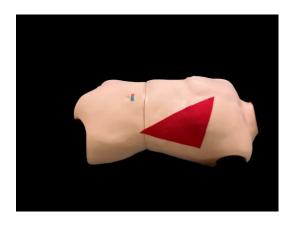
白い領域と黒い領域を画素数で割合表示

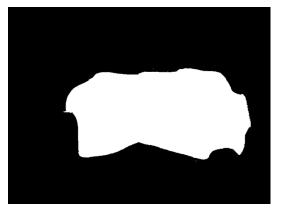

◆背景の除去




◆二値画像の作成



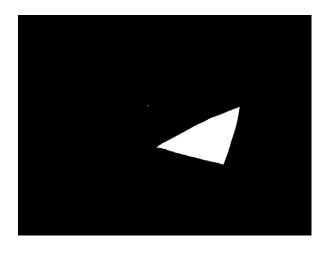
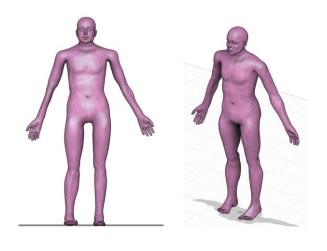

◆胴体部分の切り抜き



◆二値画像の作成

◆面積割合の算出

(熱傷部位の面積割合 [%]) =
$$\frac{\text{Image 1 の白い領域の画素数}}{\text{Image 2 の白い領域の画素数}} \times 100$$

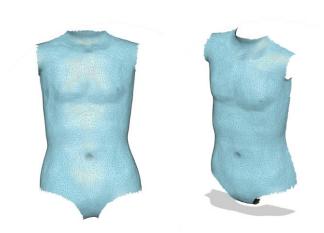
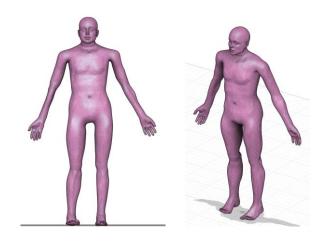
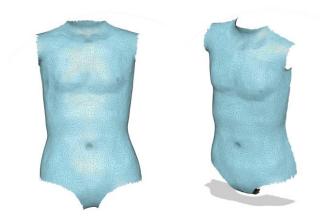

Image 1

Image 2

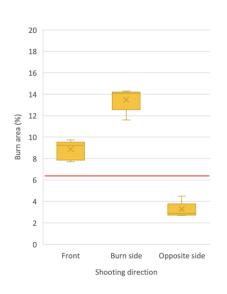
◆評価方法



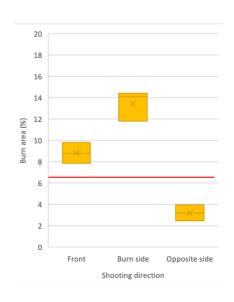

Fusion 360にて体表面積を計測
フェルトは15 cm × 20 cmの直角三角形
この2つより算出した値を理論値とした

- 1. 研究背景・目的
- 2. 提案手法
- 3. 結果
- 4. 結論・今後の展望

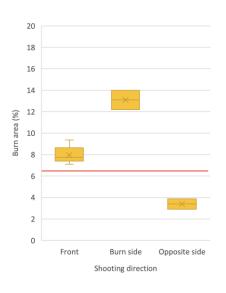
◆理論値の算出


Burn area (cm^2)	Torso area (cm^2)	Burn ratio (%)
150	2334	6.43

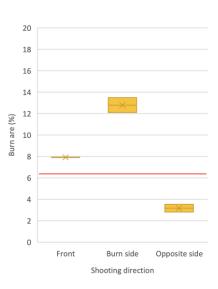
本実験における理論値は6.43%とする


◆測定結果

iPhone

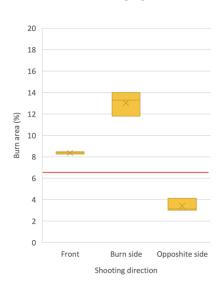

Shooting direction Burn ratio (%) Error (%) front 8.88 38.2 burn side 13.5 110 opposite side 3.27 49.1

Android SC02K

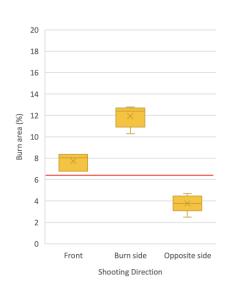

Shooting direction	Burn ratio (%)	Error (%)
front	8.80	37.0
burn side	13.4	109
opposite side	3.19	50.4

Canon IXY

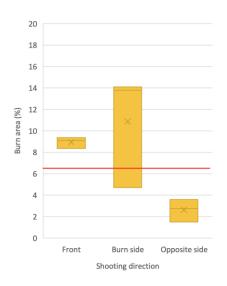
Shooting direction	Burn ratio (%)	Error (%)
front	7.96	23.9
burn side	13.1	103
opposite side	3.40	47.1


Canon Kiss X7

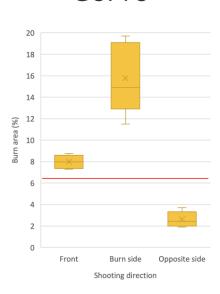
Shooting direction	Burn ratio (%)	Error (%)
front	7.93	23.3
burn side	12.8	99.2
opposite side	3.19	50.4


◆測定結果

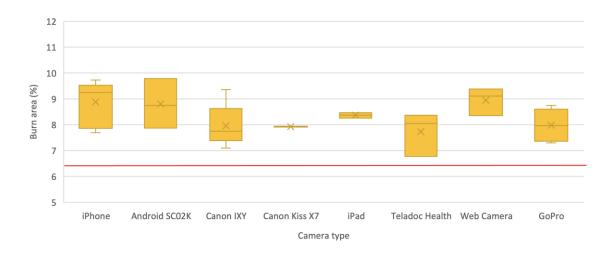
iPad

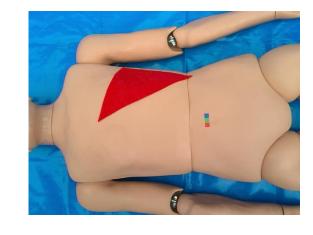

Shooting direction Burn ratio (%) Error (%) front 8.37 30.2 burn side 13.0 103 opposite side 3.42 46.8

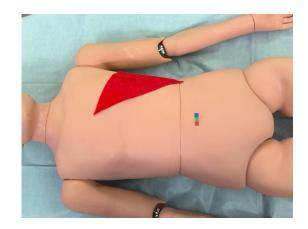
Teladoc Health


Shooting direction	Burn ratio (%)	Error (%)
front	7.73	20.3
burn side	11.9	85.5
opposite side	3.78	41.2

Web Camera


Shooting direction	Burn ratio (%)	Error (%)
front	8.95	39.2
burn side	10.9	69.1
opposite side	2.62	59.2


GoPro


Shooting direction	Burn ratio (%)	Error (%)
front	7.98	24.1
burn side	15.8	146
opposite side	2.62	59.3

◆測定結果・考察

Camera	Burn ratio (%)	Error (%)
iPhone	8.88	38.2
Android SC02K	8.80	37.0
Canon IXY	7.96	23.9
Canon Kiss X7	7.93	23.3
iPad	8.37	30.2
Teladoc Health	7.73	20.3
Web Camera	8.95	39.2
GoPro	7.98	24.1

- 1. 研究背景·目的
- 2. 提案手法
- 3. 結果
- 4. 結論・今後の展望

4. 結論・今後の展望

◆結論

- 正面から撮影した画像が3方向の中で最も誤差が小さかった
- カメラごとの有意な差は見られなかった
- 誤差は依然として大きく,原因は体表の凹凸を考慮できていないためだと考える

◆今後の展望

- フェルトの位置や大きさを変えて実験を行うこと
- 体表の凹凸を考慮した手法の模索
- 深達度の考慮もしたシステムの開発

ご清聴ありがとうございました